eppendorf

Support Growth

Fibra-Cel® Disks – A solid support growth material for cell culture

By using Fibra-Cel Disks, you can link the performance of your adherent cell line with the advantages of stirred-tank bioreactors. Fibra-Cel is a solid support growth matrix for mammalian and insect cells, used predominantly for production of secreted products such as recombinant proteins and viruses. When combined with the Eppendorf proprietary packed-bed impeller system, Fibra-Cel Disks enable growth of attachment-dependent cells in stirred-tank bioreactors and eliminate the need for cell filtration to separate cells from the end product.

Performance

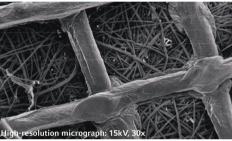
- > Proven culture success with a variety of cell lines
- > High surface-to-volume ratio supports high cell densities and productivities
- > Low shear environment facilitates the cultivation of sensitive cells

Flexibility

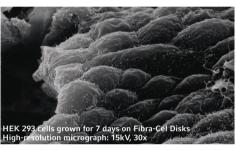
- > Usable in glass, single-use, and sterilize-in-place bioreactors
- > Large working volume range of compatible bioreactors: 1.9 L to 32 L

Ease of Use

- > Single-step inoculation
- > Easy product harvest
- > Easy setup of perfusion processes


Powerful tools for your success

By providing a growth support, you can make the cultivation of anchorage-dependent cells in stirred-tank bioreactors a reality. Fibra-Cel Disks consist of a three-dimensional mesh to which cells attach, which protects them from damaging shear forces, and which simplifies the harvest of secreted products. Like this, Fibra-Cel Disks can help you in establishing highly efficient cell culture bioprocesses; in terms of cell and product yield as well as workload.


Made to be populated

- > Attachment matrix with a diameter of 6 mm
- > Electrostatically pretreated to support cell adhesion

Micro-structured

- > Made of a polyester/polypropylene mesh
- > High surface-to-volume ratio

Growth-supporting

> Provide a low-shear environment, as the cells become embedded in the three-dimensional fiber system

Application examples*

A selection of cell types successfully grown on Fibra-Cel Disks

- > Vero (1, 2, 11,13)
- > Adherent HEK 293 (3, 4, 5, 6)
- > BHK (11)
- > CHO (7)
- > Mesenchymal stem cells (8)
- > Hybridoma (9)
- > Insect cells (12)

Typical products and applications

- > Recombinant protein expression (4, 5, 6, 7, 9,12)
- > rVSV production (1)
- > Lentiviral vector production (3)
- > Rabies virus production (10, 11)
- > Stem cell expansion (8)

^{*}Please find the reference list on the last page of this brochure. The examples and references are non-comprehensive.

By combining Fibra-Cel Disks with the Eppendorf proprietary packed-bed impeller system, you create a three-dimensional matrix. A low pressure drop across the bed minimizes variability and maintains viability of cells over the entire bed. The packed-bed technology convinces with a high and uniform mass transfer of nutrients and oxygen.

The packed-bed impeller is build into the bioreactor to form a packed-bed bioreactor:

The packed-bed impeller forms a compartment inside the bioreactor, in which the Fibra-Cel Disks and the cells attached to them are entrapped.

a bubble-free aeration in and around the packed-bed, which is

advantagous for the cultivation of shear sensitive cells.

Use the bioreactor size and material of your needs

You can use Fibra-Cel Disks in combination with glass, single-use, and sterilize-in-place bioreactors of different sizes; dependent on your needs. With Eppendorf packed-bed bioreactors you can realize a growth area of up to $1.4 \times 10^6 \text{ cm}^2$, which offers you an enormous potential for process scale-up.

Glass vessels

The Eppendorf glass vessels equipped with packed-bed impeller offer you great flexibility in working volumes; from a bed volume of 0.5 L to 5 L, corresponding to a growth surface of 6×10^4 cm² to 6×10^5 cm².

BioBLU® 5p Single-Use Bioreactor

The BioBLU 5p Single-Use Bioreactor combines the advantages of single-use vessels with the performance of packed-bed technology. The BioBLU 5p is preloaded with Fibra-Cel Disks - ready to use, saving you time on setup and cleaning.

The BioBLU 5p Single-Use Bioreactor has a bed volume of 1.5 L, corresponding to a growth surface of 1.8 x 10⁵ cm².

Sterilize-in-place bioreactors

For higher capacity, a sterilize-in-place vessel equipped with a packed-bed impeller is available. The bed volume of is 12.0 L, corresponding to a surface area of 1.4×10^6 cm².

Overview of available vessel sizes

Working volume	Bed volume	Vessel type	Fibra-Cel Disks per vessel ¹	Total disk surface area	Roller bottle equivalent ²
1.9 L	0.5 L	Glass	50 g	6.0 x 10 ⁴ cm ²	71
3.8 L	1.5 L	Glass and single-use	150 g	1.8 x 10 ⁵ cm ²	212
5.6 L	2.5 L	Glass	250 g	3.0 x 10 ⁵ cm ²	353
10.5 L	5.0 L	Glass	500 g	6.0 x 10 ⁵ cm ²	706
32.0 L	12.0 L	Stainless steel	1,200 g	1.4 x 10 ⁶ cm ²	1,694

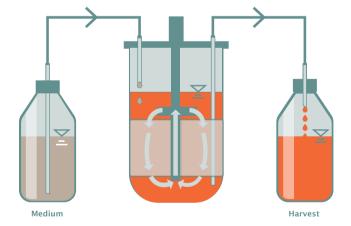
¹ On average, 10 g Fibra-Cel Disks are used per 100 mL bed volume

 $^{^{2}}$ The roller bottle equivalent is based on an average surface area of 850 cm 2 per bottle

Bioprocess scale-up in packed-bed bioreactors

Download this poster to discover, how to determine packed-bed vessel power numbers of bench-scale single-use bioreactors and production-scale sterilize-in-place (SIP) bioreactors to enable constant power per volume (P/V) scale-up.

Ease of Use


Simple procedures from incolulation to harvest

When you inoculate your bioreactor, the cells become entrapped within the Fibra-Cel Disk bed, where they remain throughout the process. Fibra-Cel Disks enable sustained long-term periods of high-density growth in perfusion, without danger of clogging. They also simplify downstream processing, as they save you the need for subsequent cell filtration to separate cells from the end product.

Efficient cell attachment

Cells usually attach efficiently to the Fibra-Cel Disks, which allows you inoculation in a straightforward manner.

- > Cell attachment takes usually only up to one hour
- > Cell attachchment is efficient, because cells become imbedded in the fiber system and cannot fall off
- > No need for perodically stopping stirring to allow time for cells to become attached

Easy product harvest

As the cells adhere to the Fibra-Cel Disks, they remain in the packed-bed throughout the bioprocess. Therefore you can easily harvest medium and secreted products, without the need for cell separation.

Easy setup of perfusion processes

The packed-bed technology allows you to easily setup a perfusion processes. Fresh medium can be added to the bioreactor through a headplate port. Used medium can be removed from the bioreactor while the cells remain in the packed-bed. This makes filtration unneccessary and therefore avoids the danger of filter clogging.

Vero cell culture in perfusion

Watch our webinar to discover, how a Vero cell perfusion process was set up using a packed-bed bioreactor and how it facilitated achieving high cell densities.

Ordering Information

Ordering information

Description	Order no.
Fibra-Cel® Disks, 50 g	M1292-9984
Fibra-Cel [®] Disks, 150 g	M1292-9992
Fibra-Cel® Disks, 250 g	M1292-9988
Fibra-Cel® Disks, 1 kg	M1292-9974

Ordering information

Description	Order no.
BioBLU® 5p Single-Use Bioreactor , cell culture, microsparger, packed-bed impeller, optical pH, sterile, 1 piece	M1363-0119
BioBLU® 5p Single-Use Bioreactor, cell culture, macrosparger, packed-bed impeller, optical pH, sterile, 1 piece	M1363-0133

For more information please visit www.eppendorf.com/Fibra-Cel and www.eppendorf.com/BioBLUc

Literature

- [1] Makovitzki et al. Evaluation of a downstream process for the recovery and concentration of a cell-culture-derived rVSV-Spike COVID-19 vaccine candidate. *Vaccine*, 39(48): 7044-7051, 2021
- [2] Guertin. A packed-bed bioreactor system for enhancing Vero cell growth in a semi-continuous mode of operation. Bachelor thesis, Worchester Polytechnic Institute, 2016
- [3] McCarron et al. Transient lentiviral vector production using a packed-bed bioreactor system. Human Gene Therapy Methods, 30(3), 2019
- [4] Dalton et al. Over-expression of secreted proteins from mammalian cell lines. Protein Science, 23(5): 517-525, 2014
- [5] Kaufman et al. Continuous production and recovery of recombinant Ca²⁺ binding receptor from HEH 293 cells using perfusion through a packed bed bioreactor. *Cytotechnology*, 33: 3-11, 2000
- [6] Kim et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. *American Journal fo Physiology-Endocrinology and Metabolism*, 291(2): E298-E305, 2006
- [7] Hatton. Productivity studies utilizing recombinant CHO cells in stirred-tank bioreactros: A comparative study between the pitch-blade and packed-bed bioreactor systems. *Master thesis*, Utha State University, 2012
- [8] Tsai et al. Expansion of human mesenchymal stem cells in fibrous bed bioreactor. Biochemical Engineering Journal, 108: 51-57, 2016
- [9] Golmakany et al. Contiunous production of monoclonal antibody in a packed-bed bioreactor. *Biotechnology and Applied Biochemistry*, 41(3): 273-278, 2010
- [10] Hassanzadeh et al. High Vero cell density and Rabies virus proliferation on Fibra Cel Disks versus Cytodex-1 in spinner flasks. Pakistan Journal of Biological Sciences, 14(7): 441-448, 2011
- [11] Gümüşderelioğlu et al. Rabies virus production in non-woven plyester fabric packed-bed bioreactors. *Biotechnology and Applied Biochemistry*, 33(3): 167-172, 2001
- [12] Kompier et al. Use of a stationary bed reactor and serum-free medium for the production of recombinant proteins in insect cells. Enzyme and Microbial Technology, 13(10): 822-827, 1991
- [13] Han et al. High-density Vero cell perfusion culture in BioBLU® 5p Single-Use Vessels. Eppendorf Application Note 359, 2017

Your local distributor: www.eppendorf.com/contact

Eppendorf SE \cdot Barkhausenweg 1 \cdot 22339 Hamburg \cdot Germany eppendorf@eppendorf.com \cdot www.eppendorf.com

www.eppendorf.com/bioprocess